CHOLESTEROLGENESIS IN VITRO FROM ETHANOL*

CLEAMOND D. ESKELSON, CLARENCE CAZEE, JACK C. TOWNE and BENEDICT R. WALSKE

Radioisotope Service, Veterans' Administration Hospital, Tucson, Ariz. 85713, U.S.A.

(Received 30 September 1968; accepted 8 September 1969)

Abstract—Ethanol is a precursor for cholesterolgenesis. The reaction route of ethanol's conversion to cholesterol is through acetate and thence to cholesterol. The rate of cholesterolgenesis from ethanol is equal to the rate of cholesterolgenesis from acetate. However, ethanol at 3.44×10^{-1} M is a noncompetitive inhibitor of cholesterolgenesis from acetate; but ethanol at 1.0×10^{-3} M decreases the specific activity of 14 C-acetate and thus decreases the incorporation of 14 C-acetate substrate into cholesterol. Injection of ethanol into rats 1 hr before the animals were sacrificed resulted in a decreased incorporation in vitro of 14 C-acetate and 14 C-ethanol into cholesterol, which is a resultant of decreasing the specific activities of the 14 C-acetate and 14 C-ethanol substrates used to study cholesterolgenesis in vitro. 14 C-mevalonate incorporation into cholesterol is not affected by ethanol administration in vivo. Disulfiram increases the rate of cholesterolgenesis in vitro from 14 C-acetate. Acetaldehyde decreases 14 C-acetate incorporation into cholesterol.

PATIENTS with chronic alcoholism have a hypercholesterolemia¹⁻³ associated with a general hyperlipidemia.¹⁻⁴ Dogs chronically treated with ethanol demonstrate a typical hyperlipidemia similar to that of the alcoholic patients. These studies suggest that ethanol is converted to acetate and thence to lipids.⁵ However, recently it was reported that ethanol *in vitro* decreases incorporation of ¹⁴C-acetate and ¹⁴C-mevalonate into cholesterol.⁶ It was therefore desirable to determine if this apparent decrease in incorporation was a result of the conversion of ethanol to acetate, which decreases the specific activity of the labeled acetate and thus would be indicated as decreased cholesterolgenesis. Furthermore, it was desirable to determine if ethanol is a precursor for cholesterolgenesis in this system. These studies confirm the conversion *in vitro* of ethanol to cholesterol and demonstrate that this conversion is as rapid as is the conversion of acetate to cholesterol.

METHODS

The methods have been described earlier^{6, 7} and consist of 2 ml of a combined liver homogenate from several rats containing only microsomes and the soluble cellular fraction, which was prepared with modification according to the procedure of Bucher and McGarrahan.⁸ Either ¹⁴C-acetate or ¹⁴C-mevalonate was employed as substrate. Cofactors and pH 7·0 phosphate buffer, described by Knauss *et al.*,⁹ were also added to the enzymic system. Various test substances were added to the enzymic mixtures.

^{*} This investigation was supported in part by a research grant from the Licensed Beverage Industries, Inc.

The final total volume of the system was adjusted to 5.0 ml. The system was incubated for 1 hr in a shaking water bath maintained at 37° . The *de novo* synthesized cholesterol was isolated from the hydrolyzed system by extraction with petroleum ether and precipitation with tomatine. The radiometric determination was made according to the procedure of Kabara *et al.*¹⁰

The disintegration rate per minute (dpm), mean, standard deviation (S.D.) and Student *t*-tests between means were computed by an IBM 1620 computer. The tabular and graphical representations are expressed as the average of 4 determinations plus or minus the standard deviation. The Student *t*-test was used for comparing means of the various experimental groups. Only P values equal to or greater than the 98 per cent level were accepted as significant.

Many of the enzyme preparations used in these studies were stored for up to 7 weeks at dry ice temperatures, which does not alter enzymic activity in this system.⁶

Lineweaver-Burk studies of alcohol's inhibition of cholesterolgenesis. Two studies were conducted using 3.4×10^{-1} M and 1.0×10^{-3} M ethanol as inhibitors of cholesterolgenesis. 14 C-acetate concentrations of 5.0×10^{-5} M, 1.0×10^{-4} M, 2.5×10^{-4} M, 7.5×10^{-4} M and 1.5×10^{-3} M were employed in the five groups of four samples respectively. The control samples contained no ethanol. The isolation and radiometric determinations of the *de novo* synthesized cholesterol from the incubation media were accomplished as previously described. The results are expressed as the reciprocal of the substrate concentration on the abscissa and as the reciprocal of the average dpm of 14 C-cholesterol formed during 1 hr of incubation along the ordinate.

Determination of maximum 2-14C-ethanol substrate concentration. To four samples of each of the six groups was added, respectively, the following 2-14C-ethanol concentrations: 0.25×10^{-3} M, 0.50×10^{-3} M, 0.75×10^{-3} M, 1.00×10^{-3} M, 1.50×10^{-3} M and 2.00×10^{-3} M. The specific activity of the 2-14C-ethanol in the samples above was equal. The incubations, isolation and radiometric determination of the de novo synthesized cholesterol were accomplished as previously described.^{6, 7}

Effect of administration in vivo of ethanol on cholesterolgenesis in vitro. Two ml of a 40 per cent (v/v) saline solution of ethanol was injected intraperitoneally into ten, 250–325 g Sprague–Dawley, white, male rats. Ten control animals received 2 ml saline only. One hr after the injection, the animals were sacrificed and their livers were removed and homogenized in the usual way. The cholesterolgenic activity of each liver homogenate obtained from the 10 saline-treated and 10 ethanol-treated rats was determined as previously described, with radioactive ethanol, acetate or mevalonate as substrate. A comparison of cholesterolgenesis between the liver homogenates from the saline-treated and ethanol-treated animals was done using the Student t-test.

RESULTS

The decreased incorporation of radioactive acetate and mevalonate into cholesterol produced by 1.0×10^{-1} M ethanol is demonstrated in Table 1. It is of interest to note that at a 1.0×10^{-3} M ethanol concentration only the incorporation of acetate into cholesterol is inhibited, whereas the incorporation of mevalonate into cholesterol is unaffected (see Table 1). The specific type of inhibition produced by ethanol at these two concentrations is obviously different. This difference is demonstrated in Figs. 1 and 2. Ethanol at 1.0×10^{-3} M is a competitive inhibitor of cholesterolgenesis with

	Additions in vitro		xp. 1 acetate	Exp. 2 14C-mevalonate	
Group no.	to enzymic system	(dpm)	(± S. D.)	(dpm)	(± S. D.)
1 2 3 4 5	Control $1\cdot 0 \times 10^{-1}$ M ethanol $1\cdot 0 \times 10^{-3}$ M ethanol $1\cdot 0 \times 10^{-5}$ M ethanol $1\cdot 0 \times 10^{-6}$ M ethanol	6044 1216† 3628† 4849 5641	1125 250 601 1168 1320	57,340 38,501† 64,675 54,234 49,953	6756 2015 6237 5938 1601

TABLE 1. EFFECT OF ETHANOL ON CHOLESTEROLGENESIS FROM ¹⁴C-ACETATE*

† Significant.

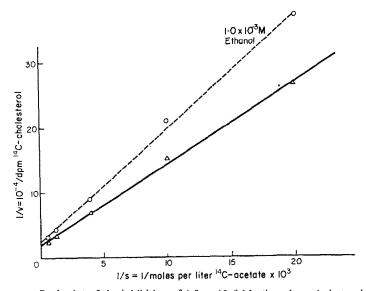


Fig. 1. Lineweaver–Burk plot of the inhibition of $1\cdot 0 \times 10^{-3}$ M ethanol on cholesterolgenesis from acetate.

acetate substrate; at 3.4×10^{-1} M, ethanol is a non-competitive inhibitor of cholesterolgenesis with acetate (see Fig. 2) and with mevalonate substrates (unpublished results).

The incorporation of radioactive ethanol into cholesterol is shown in Table 2. The rate of cholesterolgenesis from ethanol is not significantly different than that from radioactive acetate (see Table 2). The maximum ethanol concentration for maximum cholesterolgenesis is similar to that of acetate and lies between 1.0×10^{-3} and 1.5×10^{-3} M (see Fig. 3).

The metabolic conversion of ethanol to acetate involves the intermediary formation of acetaldehyde. Cholesterolgenesis from mevalonate and acetate substrate decreases in

^{*} The study was conducted with five groups of four samples in each of two experiments. ^{14}C -acetate was used as substrate in all samples of the first experiment and ^{14}C -mevalonate was used as substrate in all samples of the second experiment. No test material was added to the samples of the first group in each experiment. To the samples of the four groups of each remaining experiment was added enough ethanol so that the final ethanol concentrations in the enzymic system were: $1\cdot0\times10^{-1}$ M, $1\cdot0\times10^{-3}$ M, $1\cdot0\times10^{-5}$ M and $1\cdot0\times10^{-6}$ M, respectively.

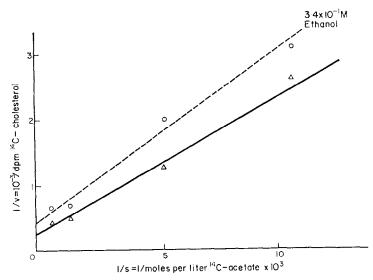


Fig. 2. Lineweaver-Burk plot of the inhibition of 3.4×10^{-1} M ethanol on cholesterolgenesis from acetate.

Table 2. Cholesterolgenesis from ¹⁴C-ethanol and ¹⁴C-acetate with time*

	Time of		rp. 1 ethanol	Exp. 2 2-1-1C-acetate	
Group no.	Time of incubation (min)	(dpm)	(± S. D.)	(dpm)	(<u>+</u> S. D.)
1	15	118	43	216	102
2	30	297	154	839	373
3	45	916	251	1494	911
4	60	1260	222	1830	564
5	90	1763	93	2190	503

^{*} The study was conducted with five groups of four samples in each of two experiments. 14C-ethanol was used as substrate in all samples of the first experiment and 14C-acetate was used as substrate in all samples of the second experiment. The same enzyme pool was used in each experiment. The first group of samples in each experiment was incubated for 15 min; the samples of the second group of each experiment were incubated for 45 min; the samples of the fourth group of each experiment were incubated for 90 min.

TABLE 3. EFFECTS OF ACETALDEHYDE ON CHOLESTEROLGENESIS IN VITRO*

	A 1102	¹⁴ C-	acetate	¹⁴ C-mevalonate		
Group no.	Additions in vitro to enzymic system	(dpm)	(± S. D.)	(dpm)	(± S. D.)	
1	Control	975	360	12,986	2504	
2	1.0×10^{-1} M acetaldehyde	111	24†	4552†	783	
3	1.0×10^{-3} M acetaldehyde	589	281	12,265	2924	
4	1.0×10^{-5} M acetaldehyde	812	337	11,991	1335	
5	1.0×10^{-6} M acetaldehyde	702	270	12,257	479	

^{*} The study was conducted with five groups of four samples in each of two experiments. 14C-acetate was used as substrate in all samples of the first experiment and 14C-mevalonate was used as substrate in all samples of the second experiment. No test material was added to the samples of the first group in each experiment, which served as the control group. To the samples of groups 2–5 of each experiment was added, respectively, acetaldehyde at the following concentration: 1.0×10^{-1} M, 1.0×10^{-3} M, 1.0×10^{-6} M and 1.0×10^{-6} M.

[†] Significant.

the presence of 1.0×10^{-1} M acetaldehyde; however, no apparent inhibition is elicited at lower acetaldehyde concentrations (see Table 3).

A comparative study of the inhibition of cholesterolgenesis from 14 C-ethanol in the presence of nonradioactive acetate at $1\cdot0\times10^{-3}$ M is demonstrated in Table 4. When an equal concentration of "cold" acetate as 14 C-ethanol substrate concentration is added to the enzymic system, approximately 50 per cent of the radioactivity is incorporated into cholesterol. The same amount of acetate does not influence the incorporation of 14 C-mevalonate into cholesterol. When equal molar concentrations and equal specific activities (i.e. $2\,\mu c$ per $1\cdot0\times10^{-3}$ M) of 14 C-ethanol and 14 C-acetate are added

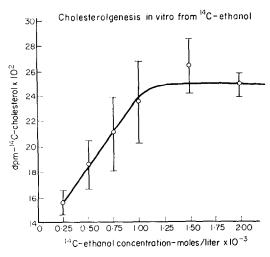


Fig. 3. Cholesterolgenesis in vitro from ¹⁴C-ethanol.

Table 4. Effect of acetate and DMSO on cholesterolgenesis from ¹⁴C-ethanol and ¹⁴C-mevalonate*

Group no.	Additions in vitro to enzymic system	Exp. 1 14C-ethanol		Exp. 2 14C-acetate		Exp. 3 ¹⁴ C-mevalonate	
		(dpm)	(±S.D.)	(dpm)	(±S.D.)	(dpm)	(±S.D.)
1 2	Control 1 × 10 ⁻³ M	2366	346	2910	543	33,689	5084
	sodium acetate	827	198†			37,500	7592
3 4	DMSO 1 × 10 ⁻³ M	125	19†				
	¹⁴ C-acetate	2835	858				

^{*} The study was done in three experiments. The first experiment was conducted with four groups of four samples each; the second experiment was conducted with one group of four samples; and the third experiment was conducted with two groups of four samples each. ^{14}C -ethanol at $1\cdot0\times10^{-3}$ M, ^{14}C -acetate at $1\cdot0\times10^{-3}$ M, and ^{14}C -mevalonate at 2×10^{-3} M were used as substrate in the respective experiments. No test materials were added to the samples of the first group in each experiment. Enough nonradioactive sodium acetate was added to the samples of the second groups of experiment 1 and 3 so that the final concentration of acetate was $1\cdot0\times10^{-3}$ M. To the samples of the third group of experiment 1 was added 0·2 ml DMSO, and to the samples of the fourth group of experiment 1 was added enough radioactive acetate (of the same specific activity as that contained in experiment 2) so that the final concentration was $1\cdot0\times10^{-3}$ M. † Significant.

simultaneously to the enzymic system, no significant difference in cholesterolgenesis occurs when compared with either 1.0×10^{-3} M 14 C-ethanol or 1.0×10^{-3} M 14 C-acetate alone (see Table 4).

Dimethylsulfoxide (DMSO), a known inhibitor of alcohol dehydrogenase,¹¹ inhibits cholesterolgenesis from ethanol (Table 4).

It has been demonstrated that the addition of 0.2 ml DMSO to this enzymic system increases cholesterolgenesis from acetate. The addition in vitro of disulfiram in DMSO further increases cholesterolgenesis above the increase produced by DMSO alone. DMSO does not prevent ethanol from decreasing the incorporation of radioactive acetate into cholesterol. (Table 5) Disulfiram and DMSO do prevent the decreased incorporation of acetate into cholesterol produced by ethanol at 3.4×10^{-1} M, but do not return the cholesterolgenic rate to that produced in the enzymic system by the mixture of DMSO and disulfiram (Table 5). The inhibition of cholesterolgenesis from

TABLE 5. EFFECTS OF DMSO AND DISULFIRAM ON ETHANOL'S INHIBITION OF CHOL-ESTEROLGENESIS*

Group no.	Additions	14C-a	cetate	¹⁴ C-mevalonate		
	in vitro to — enzymic system	(dpm)	(±S.D.)	(dpm)	(±S.D.)	
1	0·2 ml DMSO 5·0 × 10 ⁻⁴ M disulfiram	4746	413	15,658	1841	
4	+ 0·2 ml DMSO	7198	219†	14,606	1675	
3	3.4×10^{-1} M ethanol + 0.2 ml DMSO	3315	438†	13,581	986	
4	3.4×10^{-1} M ethanol 5.0×10^{-4} M disulfiram in 0.2 ml DMSO	5227	472:	12,407	1024†	

^{*} The study was conducted with four groups of eight samples. ^{14}C -mevalonate was used as substrate in four samples of each group and ^{14}C -acetate was used as substrate in the remaining four samples of each group. To all the samples of the first group was added 0.2 ml DMSO; to the samples of the second group was added 5.0×10^{-4} M disulfiram and 0.2 ml DMSO. Ethanol at 3.4×10^{-1} M and 0.2 ml DMSO were added to samples of the third group. The fourth group contained additions of the third group plus 5.0×10^{-4} M disulfiram.

TABLE 6. EFFECT OF ETHANOL ADMINISTRATION IN VIVO ON CHOLESTEROLGENESIS IN VITRO*

Group no.	77	¹⁴ C-acetate		¹⁴ C-ethanol		¹⁴ C-mevalonate	
	Treatment in vivo	(dpm)	(<u>S.D.</u>)	(dpm)	(±S.D.)	(dpm)	(±S.D.)
1 2	Saline Ethanol	26,673 4333	22,970 2586†	24,924 1584	14,806 1328†,‡	39,265 40,338	11,443 10,098

^{*} The study was conducted by injecting two groups of ten rats with either 2 ml saline or 2 ml of a saline solution containing 0.8 ml ethanol. One hr after the injections, the rats were sacrificed. Liver homogenates from each rat were prepared and studied separately, using either ¹⁴C-acetate, ¹⁴C-ethanol or ¹⁴C-mevalonate as substrate by the methods outlined in the text.

⁺ Significant.

¹ Significantly different from value for group 2.

[†] Significant.

[‡] Significantly different from value for ethanol-injected animals when ¹⁴C-acetate was substrate.

mevalonate at high ethanol concentrations was not prevented by the inhibitors of ethanol metabolism, disulfiram or DMSO, or both.

Table 6 illustrates that ethanol was incorporated into cholesterol at a rate equal to that of acetate in individual rat liver homogenates. The acute administration of ethanol to rats 1 hr before sacrifice decreases the incorporation in vitro of both ¹⁴C-acetate and ¹⁴C-ethanol into cholesterol. The decreased incorporation of ¹⁴C-ethanol into cholesterol in ethanol-treated rats is greater than the ¹⁴C-acetate incorporation into cholesterol, whereas the incorporation of ¹⁴C-mevalonate into cholesterol is unaffected by the administration in vivo of alcohol to rats.

DISCUSSION

The enzymic system used here is complex in that over 27 distinct enzymic steps have been described for the biosynthesis of cholesterol. The system is even more interesting in that some of the enzymes are contained in microsomal vesicles; therefore, substrate for microsomal enzymes must move through the microsomal membrane into the microsomes and, after the appropriate enzymic action, must move from the vesicles into the exterior milieu for continued cholesterolgenesis. The rate-determining enzyme of this series of reactions occurs in the microsomes and is concerned with the reduction of beta-hydroxy-beta-methyl-glutaryl-coenzyme A (HMG-CoA) to form mevalonic acid. When mevalonic acid is used as substrate, the rate-determining cholesterolgenic reaction from acetate substrate is bypassed.

The apparent inhibition of cholesterolgenesis (see Table 1 and 6) in the presence of alcohol is a reflection of alcohol's conversion to acetate, and then to cholesterol. This conclusion is based on the following facts: Ethanol is a competitive inhibitor of cholesterolgenesis from acetate. When equal concentrations and specific activities of radioactive ethanol and acetate are added to the enzymic system, the same incorporation of radioactivity occurs in the *de novo* synthesized cholesterol as does occur when either radioactive ethanol or acetate alone serves as the cholesterolgenic precursor. Finally, when nonradioactive ethanol is added to a ¹⁴C-acetate cholesterolgenic system, a decreased incorporation of radioactivity into cholesterol occurs; conversely, when nonradioactive acetate is added to a ¹⁴C-ethanol cholesterolgenic system, an equal diminution of radioactivity is incorporated into cholesterol (see Tables 1 and 4).

Theoretically, it was considered that ethanol might be converted to acetyl-coenzyme A (acetyl-CoA) without intervention at the level of acetate analogous to the mammalian pyruvate oxidase system or bacterial aldehyde oxidase system. If this were the case, would enhanced cholesterolgenesis occur? This possibility exists in this system, since the rate-limiting step of cholesterolgenesis requires NADPH; also the metabolic conversion of alcohol to form acetate produces NADH, which may be converted to NADPH via action of transhydrogenases. This increased NADH produced by the conversion of ethanol to acetate obviously did not overcome the rate-limiting step of cholesterolgenesis from acetate. This is not surprising, since an NADPH generating system is incorporated into the cholesterolgenic system by the addition of glucose-1-phosphate and NADP. Finally, it was concluded that the incorporation of ethanol into cholesterol was by the same route as that of acetate and indeed these results support the concept that ethanol's conversion to cholesterol is a result of its conversion to acetate and thence to cholesterol. It is obvious that the conversion of ethanol to cholesterol is just as rapid as is acetate's conversion to cholesterol (see Table 2).

Consequently, the cholesterolgenic rate-determining biosynthetic step is slower than is alcohol's conversion to acetate. It is concluded that cholesterolgenesis occurs at a normal rate in the presence of 1×10^{-3} M ethanol and 1×10^{-3} M acetate, and that the apparent inhibition of ethanol at 1×10^{-3} M is a reflection of the conversion of ethanol to acetate, thus decreasing the specific activity of the acetate pool in the system.

To further substantiate ethanol's conversion to acetate and thence to cholesterol, DMSO was used to inhibit alcohol dehydrogenase in the enzymic system.¹¹ It was shown that cholesterolgenesis from ethanol was decreased when DMSO was added to the system, whereas it is known that DMSO stimulates cholesterolgenesis when acetate is substrate.⁶

When 0.1 ml $(3.4 \times 10^{-1} \text{ M})$ ethanol is added to the system in the presence of DMSO, an inhibition of cholesterolgenesis occurs both from acetate and mevalonate substrate (Table 5), suggesting that alcohol at this concentration is a true inhibitor of cholesterolgenesis. This is substantiated when mevalonate is substrate, since in the presence of 1.0×10^{-3} M acetate or ethanol no inhibition of cholesterolgenesis resulted. Further evidence of this inhibition is demonstrated in studies in which ethanol decreased cholesterolgenesis in the presence of both DMSO and disulfiram (Table 5). The noncompetitive inhibition of cholesterolgenesis by ethanol both from acetate and mevalonate substrate at high concentrations of ethanol (see Fig. 2) possibly reflects an alteration of microsomal enzymes, since microsomes are necessary for cholesterolgenesis both from mevalonate and acetate substrate.

Disulfiram with DMSO increased cholesterolgenesis from acetate in this system. Since maximum substrate concentration is available (thus acetate utilization by other pathways would not be demonstrated), it is concluded that disulfiram has a catalytic activity. Disulfiram is probably affecting either directly or indirectly the well-known rate-determining reaction. This would seem so, particularly since cholesterolgenesis from mevalonate was unaffected by disulfiram. Furthermore, it is known that HMG-CoA reductase, the rate-limiting enzyme, contains sulfhydryl groups which are necessary for its activity. This enzyme is stabilized by, and the reductase activity is stimulated by thiol compounds. Disulfiram, bis(diethylthiocarbamate) disulfide, may in some way activate HMG-CoA reductase in this system by inter-reacting with the sulfhydryl groups of HMG-CoA reductase.

The use of acetaldehyde in this enzymic system follows logically from the known metabolism of ethanol. Moreover, it has been observed that in some cases the effect of ethanol on enzymic systems could be attributed to that of acetaldehyde produced by the oxidation of ethanol. A clear inhibition of cholesterolgenesis from acetate and mevalonate substrate was produced by acetaldehyde at $1.0 \times 10^{-1} \mathrm{M}$. Since this inhibition was nonspecific, i.e. both from acetate and mevalonate substrate, it was concluded that the inhibition was probably nonspecific, similar to that occurring when high concentrations of ethanol are added to the system. At lower concentrations, the high volatility of acetaldehyde and its combination with amines to form acetals preclude a firm conclusion as to its conversion into acetate and thence to cholesterol.

When ethanol is injected into animals 1 hr before they are sacrificed, a decreased ¹⁴C incorporation *in vitro* into cholesterol from ¹⁴C-ethanol and ¹⁴C-acetate substrate occurs (Table 6). No effect was noted when mevalonate was substrate. The results of these studies suggest that ethanol *in vivo* was converted to acetate, which increased the alcohol and acetate pools of the liver homogenate, resulting in decreased specific

activity *in vitro* of the ¹⁴C-acetate and ¹⁴C-ethanol substrate used for cholesterolgenesis *in vitro*. As a consequence a decreased ¹⁴C content of the derived ¹⁴C-cholesterol *in vitro* resulted. These studies suggest that acetate pools may be an important aspect of alcohol's metabolism in the intact animal.

Acknowledgement—The authors greatly appreciate the technical assistance of Mrs. Glenda Butterfield and Mr. Fernando Moreno.

REFERENCES

- 1. P. J. NESTEL, Aust. Ann. Med. 16, 139 (1967).
- 2. M. J. ALBRINK and G. KLATSKIN, Am. J. Med. 23, 26 (1957).
- 3. L. Zieve, Ann. intern. Med. 48, 471 (1158).
- 4. G. Klatskin, Gastroenterology 41, 443 (1961).
- 5. J. D. BEARD and J. J. BARBORJAK, Proc. Soc. exp. Biol. Med. 118, 1151 (1965).
- 6. C. D. ESKELSON, Some Effects of the Fat Soluble Vitamins on In Vitro Cholesterol Biosynthesis. Ph. D. Thesis, University of Nebraska (1967).
- 7. C. D. ESKELSON, Life Sci. 71, 467 (1968).
- 8. N. L. R. BUCHER and K. McGarrahan, J. biol. Chem. 222, 1 (1956).
- 9. J. H. KNAUSS, J. W. PORTER and G. WASSON, J. biol. Chem. 234, 2835 (1959).
- 10. J. J. KABARA, J. T. McLAUGHLIN and C. A. RIEGEL, Analyt. Chem. 33, 305 (1961).
- 11. R. L. PERLMAN and J. WOLFF, Science, N.Y. 160, 317 (1968).
- 12. N. L. R. BUCHER, K. McGARRAHAN, E. GOULD and A. V. LOUD, J. biol. Chem. 234, 262 (1959).
- 13. M. E. KIRTLEY and H. RUDNEY, Biochemistry, N. Y. 6, 230 (1967).
- 14. J. C. Towne, Nature, Lond. 201, 709 (1964).